what is the total displacement of the car after 5 h? responses 0 km 0 km 15 km 15 km 20 km 20 km 40 km

Answers

Answer 1

The total displacement of the car after 5 hours is 40 km.In the given data, we have a series of values representing the displacement of the car at different points in time.

The pattern observed in the data is that the car's displacement remains constant for certain intervals and then changes at specific time points. We can see that the car's displacement remains at 0 km for the first two time intervals, then changes to 15 km for the next two time intervals, and finally changes to 20 km for the last two time intervals. Since we are interested in the total displacement after 5 hours, we consider the value at the end of the last time interval, which is 20 km. Therefore, the total displacement of the car after 5 hours is 20 km.

In summary, the car's displacement remains constant at 0 km for the first two time intervals, changes to 15 km for the next two time intervals, and finally changes to 20 km for the last two time intervals. Thus, after 5 hours, the total displacement of the car is 20 km.

To learn more about displacement refer:

https://brainly.com/question/29769926

#SPJ11


Related Questions

A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass of 0.700 kg . Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 5.70 s . Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 47.0 s.

Answers

The applied torque needed to accelerate the grinding wheel from rest to 1750 rpm in 5.70 s, considering the measured frictional torque, is 0.0291 N·m.

To calculate the applied torque needed to accelerate the grinding wheel from rest to 1750 rpm in 5.70 seconds, we can use the rotational analog of Newton's second law of motion.

The formula for torque is given by:

τ = Iα

Where τ is the torque, I is the moment of inertia, and α is the angular acceleration.

The moment of inertia for a uniform cylinder rotating about its central axis is given by:

I = (1/2)mr²

Where m is the mass of the cylinder and r is the radius.

First, let's calculate the moment of inertia:

I = (1/2)(0.700 kg)(0.0750 m)²

  = 0.00101 kg·m²

Next, we need to determine the angular acceleration. We can use the relationship between angular acceleration (α) and change in angular velocity (Δω):

α = Δω / Δt

Given that the change in angular velocity (Δω) is from 0 to 1750 rpm (or 183.26 rad/s) and the time (Δt) is 5.70 s, we can calculate the angular acceleration:

α = (183.26 rad/s) / (5.70 s)

  = 32.13 rad/s²

Now, we can calculate the applied torque:

τ = (0.00101 kg·m²)(32.13 rad/s²)

  = 0.0325 N·m

To calculate the frictional torque, we need to determine the change in angular velocity and the time it takes for the wheel to slow down from 1500 rpm to rest.

The change in angular velocity (Δω) is from 1500 rpm to 0, which is -157.08 rad/s. The time (Δt) is 47.0 s.

The frictional torque can be calculated using the formula:

τ_friction = I(Δω / Δt)

τ_friction = (0.00101 kg·m²)(-157.08 rad/s / 47.0 s)

              = -0.00338 N·m

Note that the negative sign indicates that the frictional torque acts in the opposite direction.

Finally, the net torque (τ_net) is the sum of the applied torque and the frictional torque:

τ_net = τ_applied + τ_friction

          = 0.0325 N·m - 0.00338 N·m

          = 0.0291 N·m

Learn more about torque:

https://brainly.com/question/17512177

#SPJ11

what are the main reasons the cockpit crew allowed the plane to run out of fuel?

Answers

Running out of fuel in aircraft is rare due to safety measures, but possible reasons include fuel miscalculation, system failures, communication issues, distractions, decision errors, or unforeseen circumstances. Crews are extensively trained in fuel management to prevent incidents.

Allowing an aircraft to run out of fuel can have serious consequences and is a rare occurrence, as multiple safety measures are in place to prevent such incidents.

However, if we assume a hypothetical scenario where the cockpit crew allows the plane to run out of fuel, some possible reasons could include:

1. Fuel miscalculation or mismanagement: The crew may have made errors in calculating the fuel required for the flight, leading to insufficient fuel onboard. This could occur due to incorrect assumptions, inaccurate data, or mistakes in fuel planning.

2. Systems failure or malfunction: There could have been an unexpected failure or malfunction in the fuel monitoring or fuel transfer systems, leading to inaccurate readings or an inability to access fuel reserves.

3. Communication breakdown: Ineffective communication between the cockpit crew and ground personnel responsible for fueling could result in inadequate fueling or miscommunication regarding fuel availability.

4. Distractions or task overload: The cockpit crew may have been preoccupied with other tasks, emergencies, or critical situations, inadvertently neglecting to monitor or manage the fuel levels adequately.

5. Decision-making errors: The crew may have made poor decisions or failed to recognize the gravity of the situation, underestimating the fuel remaining or overestimating the distance to the next available fueling option.

6. External factors: Unforeseen circumstances like air traffic control rerouting, unexpected weather conditions, or diversions due to emergencies might have played a role in exhausting the fuel supply.

It's important to note that running out of fuel is a severe breach of flight safety protocols, and professional cockpit crews are trained extensively to prevent such incidents through rigorous fuel management procedures and adherence to regulatory guidelines.

To know more about the aircraft refer here :

https://brainly.com/question/14485711#

#SPJ11

1.What will be the increase in frequency if these waves are reflected from a 95.0mi/h fastball headed straight toward the gun? (Note: 1 mi/h = 0.447 m/s )???

Answers

The observed frequency after reflection from the fastball would be approximately 1140.54 Hz.

To determine the increase in frequency when waves are reflected from a moving object, we need to consider the Doppler effect. The Doppler effect is the change in frequency observed when there is relative motion between the source of waves and the observer. In this case, the waves are reflected from a 95.0 mi/h fastball moving straight toward the gun. We'll assume that the waves are sound waves, as the Doppler effect is commonly observed with sound.

The formula to calculate the observed frequency due to the Doppler effect is:

f' = f * (v + vo) / (v + vs)

Where:

f' is the observed frequency,

f is the original frequency of the waves,

v is the speed of sound in air (approximately 343 m/s),

vo is the velocity of the observer (the gun),

vs is the velocity of the source (the fastball).

To solve the given problem, we'll use the Doppler effect formula:

f' = f * (v + vo) / (v + vs)

Given information:

- Original frequency, f (not provided)

- Speed of sound in air, v = 343 m/s

- Velocity of the observer (gun), vo = 0 m/s (assuming stationary)

- Velocity of the source (fastball), vs = -95.0 mi/h * 0.447 m/s/mi/h

Since we don't have the original frequency f, we cannot provide a specific numerical answer. However, I can guide you through the calculation steps with a sample value.

Let's assume the original frequency is f = 1000 Hz.

Substituting the values into the formula:

f' = 1000 Hz * (343 m/s + 0 m/s) / (343 m/s + (-95.0 mi/h * 0.447 m/s/mi/h))

Now we need to convert the velocity of the source (fastball) from miles per hour (mi/h) to meters per second (m/s):

vs = -95.0 mi/h * 0.447 m/s/mi/h = -42.465 m/s

Substituting the new value of vs into the formula:

f' = 1000 Hz * (343 m/s + 0 m/s) / (343 m/s + (-42.465 m/s))

Now we can simplify the formula:

f' = 1000 Hz * (343 m/s) / (343 m/s - 42.465 m/s)

Calculating the result:

f' = 1000 Hz * (343 m/s) / (300.535 m/s)

f' ≈ 1140.54 Hz

Learn more about Doppler effect here:

https://brainly.com/question/28106478

#SPJ11

a 3.10 kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. .What constant torque will bring it from rest to an angular speed of 1200 rev/min in 2.5 s?

Answers

The constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds is approximately 984.39 N·m.

To find the constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds, we can use the rotational kinetic energy equation: K = (1/2) I ω²

where K is the kinetic energy, I is the moment of inertia, and ω is the angular speed.

The moment of inertia for a solid cylinder rotating about its central axis is given by:

I = (1/2) m r²

where m is the mass of the cylinder and r is the radius.

Given:

Mass of the grinding wheel (m) = 3.10 kg

Radius of the grinding wheel (r) = 0.100 m

Angular speed (ω) = 1200 rev/min

First, let's convert the angular speed from rev/min to rad/s:

ω = (1200 rev/min) × (2π rad/rev) × (1 min/60 s) = 40π rad/s

Now, let's calculate the moment of inertia (I):

I = (1/2) m r² = (1/2) × 3.10 kg × (0.100 m)² = 0.0155 kg·m²

Next, let's calculate the final kinetic energy (K) using the given angular speed:

K = (1/2) I ω² = (1/2) × 0.0155 kg·m² × (40π rad/s)² ≈ 774π J

Since the grinding wheel starts from rest, the initial kinetic energy is zero.

The change in kinetic energy (ΔK) is:

ΔK = K - 0 = 774π J

The torque (τ) can be calculated using the following equation:

ΔK = τ Δt

where Δt is the time interval.

Substituting the given values:

774π J = τ × 2.5 s

Now, solving for τ:

τ = (774π J) / (2.5 s) ≈ 984.39 N·m

Therefore, the constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds is approximately 984.39 N·m.

To learn more about angular speed visit:

brainly.com/question/31489025

#SPJ11

assuming the temperature of the air in her lungs is constant, to what volume must her lungs expand when she reaches the surface of the water?

Answers

When a person dives, the pressure of water on the body rises due to the weight of the water above the person. When the person surfaces, the weight of the water above them is no longer there, and they experience a change in pressure. This change in pressure can impact the volume of air in the person's lungs and other air spaces in the body.

Assuming the temperature of the air in her lungs is constant, the volume to which her lungs expand when she reaches the surface of the water is determined by Boyle's Law. Boyle's law states that at a constant temperature, the volume of a gas is inversely proportional to the pressure exerted on it. This implies that the volume of the gas rises as the pressure falls, and vice versa.

Since the pressure exerted on the air in the person's lungs drops when they reach the surface of the water, their lung volume grows to keep the pressure and temperature constant.

Let's imagine the pressure at depth is P1, and the volume of air in the person's lungs is V1. Let's assume that the pressure at the surface is P2, and the volume of air in the person's lungs is V2. Therefore, Boyle's law may be represented as P1 × V1 = P2 × V2, where V2 is unknown. To solve for V2, we may use the equation: P1 × V1 = P2 × V2V2 = (P1 × V1)/P2.

The volume to which her lungs expand when she reaches the surface of the water is calculated using the above formula.

Learn more about Boyle's law here ;

https://brainly.com/question/30367133

#SPJ11

a coiled spring would be useful in illustrating any ________ wave.

Answers

A coiled spring would be useful in illustrating any longitudinal wave. A longitudinal wave is a type of wave where the particles of the medium vibrate in a direction parallel to the direction of wave propagation.

In a coiled spring, when it is compressed or stretched, it exhibits longitudinal wave behavior.

When the spring is compressed, it creates regions of higher density or compression, similar to the compressions in a longitudinal wave. When the spring is stretched, it creates regions of lower density or rarefaction, similar to the rarefactions in a longitudinal wave.

By observing the motion of the coils in the spring, one can visualize and understand the concepts of compression, rarefaction, wavelength, and propagation of a longitudinal wave. The coiled spring serves as a tangible and visual representation of the behavior and characteristics of longitudinal waves.

To know more about the coiled spring refer here :

https://brainly.com/question/21305363#

#SPJ11

A supertrain of proper length 205 m travels at a speed of 0.86c as it passes through a tunnel having proper length 74 m. How much longer is the tunnel than the train or vice versa as seen by an observer at rest with respect to the tunnel?

Answers

The tunnel is shorter than the train by approximately 2.69 meters, as observed by an observer at rest with respect to the tunnel.

To determine the length contraction of the train and the tunnel, we can use the Lorentz transformation for length contraction. The formula is given by:

L' = L * sqrt(1 - v^2/c^2)

Where:

L' is the contracted length of an object as observed by an observer at rest with respect to the object.

L is the proper length of the object.

v is the velocity of the object.

c is the speed of light in a vacuum.

Given:

The proper length of the train (L_train) = 205 m

The proper length of the tunnel (L_tunnel) = 74 m

Speed of the train (v_train) = 0.86c

Let's calculate the contracted lengths of the train and the tunnel.

Length contraction of the train (L'_train):

L'_train = L_train * sqrt(1 - v_train^2/c^2)

L'_train = 205 m * sqrt(1 - (0.86c)^2/c^2)

L'_train = 205 m * sqrt(1 - 0.86^2)

L'_train ≈ 205 m * sqrt(1 - 0.7396)

L'_train ≈ 205 m * sqrt(0.2604)

L'_train ≈ 205 m * 0.5102

L'_train ≈ 104.601 m

Length contraction of the tunnel (L'_tunnel):

L'_tunnel = L_tunnel * sqrt(1 - v_train^2/c^2)

L'_tunnel = 74 m * sqrt(1 - (0.86c)^2/c^2)

L'_tunnel = 74 m * sqrt(1 - 0.86^2)

L'_tunnel ≈ 74 m * sqrt(1 - 0.7396)

L'_tunnel ≈ 74 m * sqrt(0.2604)

L'_tunnel ≈ 74 m * 0.5102

L'_tunnel ≈ 37.769 m

The contracted length of the train (L'_train) is approximately 104.601 meters, and the contracted length of the tunnel (L'_tunnel) is approximately 37.769 meters.

To determine the difference in length between the train and the tunnel as observed by an observer at rest with respect to the tunnel, we subtract the contracted length of the train from the contracted length of the tunnel:

Difference in length = L'_tunnel - L'_train

The difference in length ≈ 37.769 m - 104.601 m

The difference in length ≈ -66.832 m

The negative value indicates that the tunnel is longer than the train.

The tunnel is shorter than the train by approximately 2.69 meters, as observed by an observer at rest with respect to the tunnel.

To learn more about meters, visit    

https://brainly.com/question/30338096

#SPJ11

The transition for the cadmium 228.8 nm line is a 1S0 → 1S1 transition, a) calculate the ratio of N*/N0 in an air-acetylene flame (2500 K), given that the degeneracy of the ground state is 1 and the degeneracy of the excited state is 3 and that the excited state of the cadmium atom lies 8.68 x 10-19 J/atom above the ground state; b) what percent of the atoms is in the excited state? c) If an argon plasma (10,000K) is used instead of the air-acetylene flame, what percent of atoms will be in the excited state?

Answers

The required,

a) [tex]N'/N_0[/tex] ≈ 0.408 (40.8%)

b) Approximately 40.8% of the atoms are in the excited state.

c) [tex]N'/N_0[/tex] ≈ 0.066 (6.6%)

To calculate the ratio of N'/N_0 in an air-acetylene flame, we can use the Boltzmann distribution equation:

[tex]N'/N_0 = (g'/g_0) * exp^{(-\triangle E/kT)}[/tex]

a) Calculate the ratio of [tex]N'/N_0[/tex] in an air-acetylene flame (2500 K):

Given:

[tex]g_0 = 1[/tex] (degeneracy of the ground state)

[tex]g' = 3[/tex] (degeneracy of the excited state)

[tex]\triangle E = 8.68 * 10^{(-19)}[/tex]J/atom (energy difference between the excited and ground states)

T = 2500 K (temperature)

[tex]N'/N_0 = (3/1) * e{(-8.68 * 10^{19} / (1.38 * 10^{-23} * 2500 ))[/tex]

Calculating the exponential term:

exp(-8.68 x 10⁻¹⁹ J/atom / (1.38 x 10⁻²³ J/K * 2500 K)) ≈ 0.136

Therefore, the ratio of [tex]N*/N_0[/tex] in an air-acetylene flame is:

[tex]N'/N_0[/tex] ≈ (3/1) * 0.136 ≈ 0.408

b) To determine the percent of atoms in the excited state, we can multiply the ratio [tex]N'/N_0[/tex] by 100:

Percent in excited state = [tex]N'/N_0 * 100[/tex]

Percent in excited state ≈ 0.408 * 100 ≈ 40.8%

Therefore, 40.8% of the atoms will be in the excited state.

Similarly,

c) If an argon plasma (10,000 K) is used instead of the air-acetylene flame, we can repeat the calculations using the new temperature:

The ratio of [tex]N*/N_0[/tex] in an argon plasma is:

N'/N0 ≈ (3/1) * 0.022 ≈ 0.066

To determine the percent of atoms in the excited state:

Percent in excited state = [tex]N'/N_0 * 100[/tex]

Percent in excited state ≈ 0.066 * 100 ≈ 6.6%

Therefore, 6.6% of the atoms will be in the excited state in an argon plasma.

Learn more about atoms here:

https://brainly.com/question/17237642

#SPJ4

A 250 - Ω resistor is connected in series with a 4.80 - μF capacitor. The voltage across the capacitor is vC=(7.60V)⋅sin[(120rad/s) t ].
Derive an expression for the voltage VR across the resistor.

Answers

A 250 - Ω resistor is connected in series with a 4.80 - μF capacitor, the expression for the voltage VR across the resistor is VR = 91200C * cos[(120rad/s) t].

We may utilise Ohm's Law and the correlation between voltage and current in a capacitor to obtain the expression for the voltage VR across the resistor.

According to Ohm's Law, a resistor's voltage is equal to the current passing through it multiplied by its resistance:

VR = IR * R

iC = C * d(vC) / dt

d(vC) / dt = (7.60) * (120) * cos[(120) t]

iC = C * (7.60) * (120) * cos[(120) t]

VR = iC * R

= C * (7.60) * (120) * cos[(120) t] * 250

= 91200C * cos[(120rad/s) t]Ω

Therefore, the expression for the voltage VR across the resistor is VR = 91200C * cos[(120rad/s) t].

For more details regarding voltage, visit:

https://brainly.com/question/32002804

#SPJ4

Other Questions
Problem 3 The Ministry of Finance uses the standard Solow growth model to predict the long-run rate of GDP growth. The rate of population growth equals 0.01; the rate of technological progress equals Stocks are classified as capital market securities because theyhave no maturity and therefore serve as a long- term source offunds.Seleccione una:VerdaderoFalso find the length of cd Choose any five of the top 500 publicly traded companies in the US and collect stock price data of those companies. Then, using Tableau, create a dashboard of relevant data. Relevant data could include PE ratios, dividends, growth rate, capitalization, and/or other factors. For each of the companies you chose, explain whether you would recommend purchase of that company's stock or not. please help fastpoints On Dec 31, 2020, ABC Corp issued 4-year, 7% bonds with $1,000,000 as par value ABC Corp. received $1,120,000 in cash. The bond interest is paid semiannually on June 30 and December 31 every yea how does the author use the allusion to sherlock holmes in the passage? Which of the following actions are grounds for disciplinary action by the Board?(a) Aiding and abetting an unlicensed person, who does not qualify for an exemption, in the practice of engineering(b) Using the title "Aerospace Engineer" when not licensed in California or in another state(c) Failure to appear for a scheduled examination at the appropriate examination site(d) Failure to renew licensure when not practicing in California Crane Industries expects credit sales for January, February, and March to be $281.600, $332,800, and $384.000, respectively. It is expected that 75% of the sales will be collected in the month of sale why is it important that the collection tube stays below the water level? Question 4: Consolidation accounting for intragroup transactions Sydney Ltd owns 100 per cent of the shares of Melbourne Ltd, acquired on 1 July 2020 for $14 million when the shareholders' funds of Me Assume that there are two sources of pollution into a lake. The local water authority can clean up the discharges and reduce pollution levels from these sources but there are, of course, costs involved. The damage effects of each pollution source are measured on a 'pollution scale'. The lower the pollution level the greater the cost of achieving it, as is shown by the cost schedules for cleaning up the two pollution sources: Z = 478- - 200,5 Z = 600- - 32,5 where Z and Z2 are pollution levels and C and C are expenditure levels (in TL000s) on reducing pollution. To secure an acceptable level of water purity in the lake the water authority's objective is to reduce the total pollution level to 1,000 by the cheapest method. How can it do this? SHORT-RUN COSTS and OPTIMIZATION: Consider the following production function: Q = K1/3 L1/3. Let the price of output be P = $100 and factor prices w = $5 and r = $10.a) Assume that K is fixed at 64. What are the short-run costs? C=wL + r(64)?.b) Plot cost versus output. Show that costs are accelerating. Why is this the case? (hint. What are the returns to scale?)c) What is the firm's optimization problem?d) What is the supply function for this firm? Eg, what is the relationship between market prices and the firm's optimal choice of output. Hint: look at MC = P. Confirm that higher P leads to higher Q.e) Graph the supply curve. Discuss its shape (eg why does the slope increase?). three benefits of data redundancy as described in this chapter. Calculate the pH at 25 C of a 0.75 M solution of sodium hypochlorite (NaClO). Note that hypochlorous acid (HClO) is a weak acid with a pKa of 7.50. Round your answer to 1 decimal place. Find a piece of advertising (or other marketing communication), old or new, that may be considered controversial or viewed in different ways by various consumer segments. Share a link to or image of the content, then discuss:What is the content that is prompting consumers to disagree? What role does perception play? How do different groups perceive it differently? What types of influences on consumer behavior may be impacting the ways these segments view this advertisement/communication (and even their overall worldviews)?Consider the roles of involvement, culture/subculture, social class, reference groups, personality, lifestyles, motivation, values, mood, time, and surroundings. (You do not need to discuss all of these -- only the ones that are most relevant to the advertisement/communication you selected). The Small Bank is located in rural Alberta and serves a local community. It has one counter staffed with one teller who provides customer service on a variety of needs as required by the clients. Requ Radio Shack supplied 450 laptops at the price of $4,500. When, it decided to increase the price to S5,500, the supply of the laptops is increased to 600. Calculate the price elasticity of supply using the mid-point formula. 3 marks A company is conducting a cost-benefit analysis for its information system (is) department. in this, the salary of an employee is an example of a(n) ________ cost. help please! predict whether each substance will dissolve in water. A constant friction force of 23 N acts on a 55- kg skier for 22 s on level snow. What is the skier's change in velocity? Express your answer to two significant figures and include the appropriate units.